ANLAGE 2.4

HYDRAULISCHER NACHWEIS

will jep-H, we jeselve

+0,5m über hist. Max

Bemessungsgrundlagen

Bemessungswasserspiegel	442,5	m üNN	
Bemessungsdurchfluss	130	I/s	
Rauhigkeitsbeiwert Manning Beiwert k _b :	0,5	mm	GFK
	0,4	mm	Stahl
	2	mm	Beton
Rauhigkeitsbeiwert (Stricklerbeiwert) kst:	75	m ^{1/3} /s	Stahlbeton
7 31	90	m ^{1/3} /s	Stahl

1. Ablauf zur ilm

1.1 Vollaufendes Kreisprofil

Wasserspiegel Unterwasser	442,500	m üNN
Rohrsohle am Unterwasser	441,934	m üNN
Rohrsohle am Oberwasser	442,480	nn üNN
Durchfluß Q	130	l/s
Nennweite DN	500	mm
Rauhigkeitsbeiwert k	2	mm
Länge	25,00	m
Verlustbeiwerte Zeta		
Einzelverluste		
Auslauf	1,000	
Einlauf	0,500	
Summe	1,500	
Rohrreibungsverluste		
Re	252,704	
Iteration	5,889	
Lambda	0,029	
Zeta	1,442	
Summe	2,942	
Fließgeschwindigkeit	0,66	m/s
Wasserspiegel am Unterwasser	442,500	m üNN
Geschwindigkeitshöhe	0,022	m
Energielinie am Unterwasser	442,500	m üNN
Energieverlusthöhe	0,066	m
Energielinie am Oberwasser	442,566	m üNN
Wasserspiegel am Oberwasser	442,543	m ann

1.2 Normalwasserverhältnisse Kreisgerinne

Durchfluß Q	0,1300	m³/s
Nennweite DN	0,50	m
Rauhigkeitsbeiwert k _{st}	75	m ^{1/3} /s
Sohlgefälle Is	0,0218	-
Öffnungswinkel phi	1,230	[Bogenmaß]
Fließguerschnitt A	0,057	m²
Benetzter Umfang U	0,615	m
$R_{hyd} = A/U$	0,093	m
Normalwassertiefe h _n	0,166	m
Normalgeschwindigkeit v _n	2,274	m/s
Normalenergiehöhe H _n	0,430	m
Normalwassertiefe h _n	44 <mark>2,</mark> 646	m
Maßgebender Wasserspiegel am Oberwasser	442,646	moNN

2. Venturirinne am Ablauf der Kläranlage (vereinfacht)

2.1. Eingabedaten

Wasserspiegel am Unterwasser	442,646	m üNN
Rohrsohle am Unterwasser	442,47	m üNN
Rohrsohle am Oberwasser	442,57	m üNN
Durchfluß Q	130,0000	l/s
Gerinnebreite b	0,30	m
Gesamtlänge	8,25	m
Rauhigkeitsbeiwert k _{st}	70	m ^{1/3} /s
Bordhöhe _{OW}	444,150	m ūNN

2.2. Grenzverhältnisse Rechteckgerinne

Grenzwassertiefe h _{gr}	0,268	m
Grenzgeschwindigkeit v _{gr}	1,620	m/s
Grenzenergiehöhe H _{gr}	0,401	m

2.3. Rechteckgerinne: Wasserspiegellage bei stationär ungleichförmiger Strömung

Sohlgefälle I _s	0,012	-
h _{uw}	0,176	m
Länge	8,25	m
benetzer Querschnitt A _{UW}	0,053	m²
benetzter Umfang U _{UW}	0,653	m
hydraulischer Radius: Rhyd _{uw}	0,081	m
Vuw	2,457	m/s
Normalwassertiefe h _n	0,268	m
A _{ow}	0,132	rn²
U _{ow}	1,182	m
Rhyd _{ow}	0,112	m
V _{OW}	0,983	m/s
A _{rnittel}	0,093	m²
U _{mittel}	0,917	m
R _{hyd mittel}	0,101	m
Vmittel	1,720	m/s
C _m	47,764	
l _e	0,013	
Δ e, Energiehöhe	0,106	
Δ e, Geschwindigkeitshöhe	-0,258	
Resultierendes A h	0,364	m
h _{OW}	0.441	m

1,139 m

443,011 m üNN

Freibord

Wasserspiegel am Oberwasser

3. Ablaufleitung Nachklärung

3.1 Vollaufendes Kreisprofil

Wasserspie	gel Unterwasser	443,011	m üNN
Energielinie	am Unterwasser	443,011	m üNN
Rohrsohle ar	m Unterwasser	442,940	m üNN
Rohrsohle ar	m Oberwasser	443,450	m üNN
Durchfluß Q		65	l/s
	Nennweite DN	300	mm
	Rauhigkeitsbeiwert k	2	mm
	Länge	21,00	m
Verlustbeiw	erte Zeta		
	Einzelverluste		
	Auslauf	1,000	
	Krümmer 90 Grad	0,178	
	Krümmer 90 Grad	0,178	
	Krümmer 90 Grad	0,178	
	Einlauf	0,500	
	Summe	2,034	
	Rohrreibungsverluste		
	Re	210.587	
	Iteration	5,460	
	Lambda	0,034	
	Zeta	2,348	
Summe		4,382	
Fließgeschv	vindigkeit	0,92	m/s
Wasserspie	gel am Unterwasser	443,240	m üNN
Geschwindig	keitshöhe	0,043	ି <mark>m</mark>
Energieverlu	sthöhe	0,189	m
Energielinie	am Oberwasser	443,200	m üNN
Wasserspie	gel am Oberwasser	443,157	m unn

4. Ablaufrinne Nachklärbecken 1

Wasserspiegel Unterwasser	443,157	m üNN
Energielinie am Unterwasser	443,200	m üNN
Gerinnesohle Ablauftopf	443,460	m üNN
Gerinnesohle Hochpunkt (Oberwasser)	443,470	m üNN
Durchfluß Q pro Ablaufstrang	0,033	m³/s
Gerinnebreite b	0,40	m
Gesamtlänge pro Ablaufstrang	28,27	m
Zahl der Abschnitte der Zulaufberechnung	7	-
Sohlgefälle I₅	0,035%	-

4.1 Grenzverhältnisse Rechteckgerinne

Grenzwassertiefe h _{gr}	0,088	m
Grenzgeschwindigkeit v _{gr}	0,927	m/s
Grenzenergiehöhe H _{gr}	0,131	m

4.2 Berechnung von Unstetigkeitsstellen mit Energieverlust Rechteckgerinne

h _{unten}		0,088	m	
Q		0,0325	m³/s	
b _{oben}		0,40	m	
Verlust xi		0,75	-	(Stromvereinigung)
A _{oben}		0,060	m²	
Voben		0,536	m/s	
Q		0,033	m³/s	
b _{unten}		0,40	m	
A _{unten}		0,035	m²	
Vunten		0,927	m/s	
Energiehöhe				
Hunten	0,131	m		
H _{oben}	0,164	m		
h _{oben}	0,149	m		

4.3 Rechteckgerinne: Wasserspiegellage bei stationär ungleichförmiger Strömung (Abschnitt für Abschnitt)

h _{unten}	0,149	m	
Quriten	0,0325	m³/s	
q	0,0011	m³/sm	
Abschnittslänge	4,04	m	
Gerinnebreite b	0,40	m	
Abschnitt 1			
Durchfluß Q	0,0325	m³/s	
Breite b	0,40	m	
Rauhigkeitsbeiwert k _{st}	60	m ^{1/3} /s	
h _{unten}	0,149	m	
Länge	4,04	m	
Autten	0,060	m²	
U _{unten}	0,698	m	
R _{hyd unten}	0,085	m	
V _{unten}	0,545	m/s	
Normalwasserfiefe h _n	0,297	m	
Für h _{unten} > h _n folgt Staukurve	h	oben < h _{unten}	
Für h _{unten} < h _n folgt Senkungskurve	h,	oben > hunten	Gültig, Senkungskurv
A _{oben}	0,063	m²	
U _{oben}	0,715	m	

D	0,088	m	
R _{hyd oben}	0,516	m/s	
V _{oben}	0,061	m²	
A _{mittel} U _{mittel}	0,707	m	
Rhyd mittel	0,087	m	
V _{mittel}	0,530	m/s	
C _m	39,924	1100	
I _e Energieliniengefälle	0,002		
Δ e, Energiehôhe	0,008		
Δ e, Geschwindigkeitshöhe	-0,002		
Resultierendes Δ h	0,010	m	
h _{oben}	0,158	m	
Abschnitt 2	0.0070	m3/a	
Durchfluß Q	0,0279 0,40	m³/s	
Breite b	60	m m ^{1/3} /s	
Rauhigkeitsbeiwert k _{st}	0,000		
Sohlgefälle I₅	0,000	- m	
h _{unten}	4,04	m m	
Länge	0,063	m m²	
Aunten	0,715	m	
U _{unten}	0,088	m	
R _{hyd unten}	0,442	m/s	
v _{unten} Normalwassertiefe h _n	0,263	m	
Für h _{unten} > h _n folgt Staukurve	0,203	h _{oben} < h _{unten}	
Für h _{unten} < h _n folgt Senkungskurve		h _{ohen} > h _{unten}	Gültig, Senkungskurv
	0,065	m ²	oung, comangonari
A _{oben} U _{oben}	0,724	m	
	0,090	m	
R _{hyd oben}	0,430	m/s	
Voben A _{mittel}	0,064	m²	
Umittel Umittel	0,720		
Rhyd mittel	0,089	ım	
V _{mittel}	0,436	m/s	
Trinker C _m	40,077		
l _e	0,001		
Δ e, Energiehöhe	0,005		
Δ e, Geschwindigkeitshöhe	-0,001		
Resultierendes Δ h	0,006		
h _{oben}	0,162	m	
Alexahmist 2			
Abschnitt 3 Durchfluß Q	0,023214286	m³/s	
Breite b	0,40		
Rauhigkeitsbeiwert k _{st}	60	1/3.	
Sohlgefälle I _s	0,000		
	0,162		
h _{unten} Länge	4,04		
A _{unten}	0,065		
V _{unten}	0,724		
R _{fryd unten}	0,090		
	0,358		
V_{unten} Normalwassertiefe h _n	0,229		
Für h _{unten} > h _n folgt Staukurve	0,220	h _{oben} < h _{unten}	
Für h _{unten} < h _n folgt Senkungskurve		h _{ober} > h _{unten}	Gültig, Senkungskurv
A _{oben}	0,066		
U _{oben}			
	0.729	m	
Rhut aller	0,729 0,090		
R _{hyd oben} V _{oben}	0,729 0,090 0,353	m	

۸	0.005	?	
A_{mittel} U_{mittel}	0,065 0,726	m² m	
R _{hyd mittel}	0,090	m	
V _{mittel}	0,356	m/s	
· mittel	40,155	111/3	
l _e	0,001		
Δ e, Energiehöhe	0,004		
Δ e, Geschwindigkeitshöhe	0,000		
Resultierendes Δ h	0,004	m	
h _{oben}	0,164	m	
Abschnitt 4			
Durchfluß Q	0,0186	m³/s	
Breite b	0,40	m	
Rauhigkeitsbeiwert k _{st}	60	m ^{1/3} /s	
Sohlgefälle I _s	0,000	-	
h _{unten}	0,164	m	
Länge	4,04	m	
A _{unten}	0,066	m²	
U _{unten}	0,729	m	
R _{hyd unten}	0,090	m	
V _{unten}	0,283	m/s	
Normalwassertiefe h _n	0,193	m	
Für h _{unten} > h _n folgt Staukurve		h _{oben} < h _{unten}	
Für h _{unten} < h _n folgt Senkungskurve		h _{oben} > h _{uriten}	Gültig, Senkungskurv
A _{oben}	0,066	m²	
U _{oben}	0,730	m	
R _{hyd oben}	0,090	m	
V _{oben}	0,281	m/s	
A _{mittel}	0,066	m²	
Umittel	0,729	m	
R _{hyd mittel}	0,090	m	
V _{mittel}	0,282	m/s	
C _m	40,190		
l _e	0,001		
Δ e, Energiehöhe	0,002		
Δ e, Geschwindigkeitshöhe	0,000		
Resultierendes Δ h	0,002	m	
h _{oben}	0,165	m	
Abschnitt 5			
Durchfluß Q	0,0139	m³/s	
Breite b	0,40	m	
Rauhigkeitsbeiwert k _{st}	60	m ^{1/3} /s	
Sohlgefälle I _s	0,000	-	
h _{unten}	0,165	m	
Länge	4,04	m	
A _{unten}	0,066	m²	
U _{unten}	0,730	m	
Rhyd unten	0,090	m	
Vunten	0,211	m/s	
Normalwassertiefe h _n	0,156	m	
Für h _{unten} > h _n folgt Staukurve		h _{oben} < h _{unten}	Gültig,Staukurve
Für h _{unten} < h _n folgt Senkungskurve		h _{oben} > h _{unten}	
di Hunten - Hin torge Germanigakan ve			
A _{oben}	0,066	m²	
A _{oben}		m² m	
A _{oben}	0,066		
A _{oben} U _{oben}	0,066 0,730	m	
A _{oben} U _{oben} R _{hyd oben}	0,066 0,730 0,090	m m	

	2.000		
R _{hyd mittel}	0,090	m	
V _{mittel}	0,211	m/s	
C _m	40,197		
l _e	0,000		
Δ e, Energiehöhe	0,001		
Δ e, Geschwindigkeitshöhe	0,000		
Resultierendes Δ h	0,001	m	
h _{oben}	0,165	m	
Abschnitt 6			
Durchfluß Q	0,0093	m³/s	
Breite b	0,40	m	
Rauhigkeitsbeiwert k _{st}	60	m ^{1/3} /s	
Sohlgefälle I _s	0,000	-	
h _{unten}	0,165	m	
Länge	4,04	m	
A _{unten}	0,066	m²	
U _{unten}	0,730	m	
R _{hyd unten}	0,090	m	
Vunten	0,141	m/s	
Normalwassertiefe h _n	0,117	m	
Für h _{unten} > h _n folgt Staukurve	The State of the S	oben < hunten	Gültig,Staukurve
Für h _{unten} < h _n folgt Senkungskurve		loben > hunten	
	0,066	m ²	
A _{oben}	0,728	m	
U _{oben}	0,090	m	
R _{hyd obert}		m/s	
V _{oben}	0,142		
Amittell	0,066	m²	
Umittel	0,729	m	
R _{hyd mittel}	0,090	m	
V _{mittel}	0,141	m/s	
C _m	40,184		
l _e	0,000		
Δ e, Energiehöhe	0,001		
Δ e, Geschwindigkeitshöhe	0,000		
Resultierendes Δ h	0,001	m	
h _{oben}	0,164	m	
Abschnitt 7			
Durchfluß Q	0,0046	m³/s	
Breite b	0,40	m	
Rauhigkeitsbeiwert k _{st}	60	m ^{1/3} /s	
Sohlgefälle I _s	0,000	_	
h _{unten}	0,164	m	
Länge	4,04	m	
A _{unten}	0,066	nn²	
U _{unten}	0,728	m	
R _{hyd} unten	0,090	m	
Vunten	0,071	m/s	
Normalwassertiefe h _n	0,073	m	
Für h _{unten} > h _n folgt Staukurve	400000000000000000000000000000000000000	h _{oben} < h _{unten}	Gültig,Staukurve
Für hunten < hn folgt Senkungskurve		h _{oben} > h _{unten}	A
A _{oben}	0,065	m ²	
U _{oben}	0,725	m	
	0,090	m	
R _{hyd oben}	0,071	m/s	
Voben		m²	
Amittel	0,065		
U _{rnittel}	0,727	m	
Rhyd militel	0,090	m /s	
V _{mittel}	0,071	m/s	

C_{m}	40,160	
l _e	0,000	
Δ e, Energiehöhe	0,000	
Δ e, Geschwindigkeitshöhe	0,000	
Resultierendes A h	0,000	m
h _{oben}	0,163	m
Wasserspiegel am Unterwasser	443,609	m üNN
Wasserspiegel am Oberwasser	443,633	m ann

5. Überfall NKB Ablaufrinne

Es wird nach Poleni zwischen vollkommenem und unvollkommenem Überfall unterschieden.

Bei unvollkommenem Überfall wirkt der Unterwasserspiegel au den Oberwasserspiegel ein. Wenn der Wasserspiegel im Unterwasser die Wehroberkante übertsteigt gilt der unvollkommene Überfall.

5.1. Eingabedaten

Durchfluss Q	65	l/s
Wasserspiegel Unterwasser	443,633	m üNN
Wehroberkante	443,85	m üNN
Wehrbreite	50,3	m
Bordhöhe	444,45	m üNN
Überfallbeiwert µ	0,64	
Exponent n	1,4	

5.2.a) volikommener Überfall

Überfallhöhe	0,008	m
Freibord	0,592	m
Wasserspiegel Oberwasser	443,858	m üNN

5.2.b) unvollkommener Überfall

Wasserspiegel am Oberwasser	443,858 m ūNN	
Wasserspiegel Oberwasser	443,850	m üNN
Freibord	0,600	m
Überfallhöhe	0,000	m

6. Zulaufleitung zum Nachklärbacken (2 teilig)

Hydraulische Verluste im Nachklärbecken vernachlässigt

6.1 Vollaufendes Kreisprofil

Wasserspieg	el Unterwasser	443,858	m üNN
Energielinie a	m Unterwasser	443,858	m üNN
Rohrsohle am		440,850	m üNN
Rohrsohle am	Oberwasser	440,850	m üNN
Durchfluß Q		57	l/s
	Nennweite DN	300	mm
	Rauhigkeitsbeiwert k	0,2	mm
	Länge	13,30	m
Verlustbeiwe	rte Zeta		
	Einzelverluste		
	Auslauf	1,000	
	Krümmer 90 Grad	0,178	
	Krümmer 90 Grad	0,178	
	Krümmer 30 Grad	0,070	
	Einlauf	0,500	
	Summe	1,926	
	Rohrreibungsverluste		
	Re	184.263	
	Iteration	7,116	
	Lambda	0,020	
	Zeta	0,875	
Summe		2,801	
Fließgeschwindigkeit		0,80	m/s
Wasserspiegel am Unterwasser		443,858	m üNN
Geschwindigl		0,033	m
Energieverlus		0,092	m
The state of the s	am Oberwasser	443,950	m üNN
The state of the s	gel am Oberwasser	443,917	m ann

7. Zulaufleitung zum RLS Kammer zum Belebungsbecken

Hydraulische Verluste im Belebungsbecken vernachlässigt

7.1 Vollaufendes Kreisprofil

Wasserspiege	el Unterwasser	443,917	m üNN
Energielinie ar	n Unterwasser	443,917	m üNN
Rohrsohle am	Unterwasser	443,080	m üNN
Rohrsohle am	Oberwasser	443,100	m üNN
Durchfluß Q		114	l/s
	Nennweite DN	400	mm
	Rauhigkeitsbeiwert k	90	mm
	Länge	6,60	m
Verlustbeiwei	rte Zeta		
	Einzelverluste		
	Auslauf	1,000	
	Einlauf	0,500	
	Summe	1,500	
Rohrreibungsverluste			
	Re	276.395	
	Iteration für 1/Lambda	2,434	(nach Colebrook u. White)
	Lambda	0,169	
	Zeta	2,785	
Summe		4,285	
Fließgeschwi	ndigkeit	0,91	m/s
Wasserspiege	el am Unterwasser	443,917	m üNN
Geschwindigke	eitshöhe	0,042	m
Energieverlust	höhe	0,179	m
Energielinie ar	n Oberwasser	444,096	m üNN
Wasserspiege	el am Oberwasser	444,054	m ann

8. RLS Mischrinne

Nachweis über Rehm Fluss, siehe Anhang 2.4.2			
Wasserspiegel am Oberwasser	444,280	m DNN	

9. Zulaufleitung zur RLS Mischrinne

9.1 Vollaufendes Kreisprofil

Wassersp	iegel Unterwasser	444,280	m üNN
Energielini	e am Unterwasser	444,280	m üNN
Rohrsohle	am Unterwasser	443,951	m üNN
Rohrsohle	am Oberwasser	444,170	m üNN
Durchfluß	Q	130	l/s
	Nennweite DN	500	mm
	Rauhigkeitsbeiwert k	2	mm
	Länge	33,50	m
Verlustbei	iwerte Zeta	200200	
	Einzelverluste		
	Auslauf	1,000	
	Einlauf	0,500	
	Auslauf	1,000	
	Einlauf	0,500	
	Summe	3,000	
	Rohrreibungsverluste		
	Re	252.704	
	Iteration	5,889	
	Lambda	0,029	
	Zeta	1,932	
Summe		4,932	
Fließgesc	hwindigkeit	0,66	m/s
Wassersp	iegel am Unterwasser	444,451	m üNN
Geschwind	ligkeitshöhe	0,022	m
Energiever	flusthöhe	0,110	m
Energielini	e am Oberwasser	444,390	m üNN
Wassersp	legel am Oberwasser	444,368	m ann

10. Venturirinne am Zulauf der Kläranlage (vereinfacht)

10.1. Eingabedaten

Wasserspiegel am Unterwasser	444,368	m üNN
Rohrsohle am Unterwasser	444,17	m ūNN
Rohrsohle am Oberwasser	444,33	m üNN
Durchfluß Q	130	I/s
Gerinnebreite b	0,30	m
Gesamtlänge	8,25	
Rauhigkeitsbeiwert k _{st}	70	m ^{1/3} /s
Bordhöhe _{OW}	445,310	m üNN

10.2. Grenzverhältnisse Rechteckgerinne

Grenzwassertiefe h _{gr}	0,268	m
Grenzgeschwindigkeit v _{gr}	1,620	m/s
Grenzenergiehöhe Har	0,401	m

10.3. Rechteckgerinne: Wasserspiegellage bei stationär ungleichförmiger Strömung

Sohlgefälle I _s	0,019	-
h _{uw}	0,198	m
Länge	8,25	m
benetzer Querschnitt A _{UW}	0,059	m²
benetzter Umfang U _{UW}	0,696	m
hydraulischer Radius: Rhyd _{uw}	0,085	m
V _{UW}	2,190	m/s

Wasserspiegel am Oberwasser	444,639	m üNN
Freibord	0,671	m
h _{ow}	0,309	m
Resultierendes Δ h	0,271	m
Δ e, Geschwindigkeitshöhe	-0,144	
Δ e, Energiehöhe	0,127	
l _e	0,015	
C_{m}	47,219	
V _{mittel}	1,797	m/s
Rhyd mittel	0,094	<mark>m</mark>
J _{mittel}	0,807	m
A _{mittel}	0,076	m²
Vow	1,403	m/s
Rhyd _{ow}	0,101	m
U _{ow}	0,918	m
A _{ow}	0,093	m²
Normalwassertiefe h _n	0,222	m

12. Leitung Sandfang zum Zulauf Venturigerinne

12.1 Vollaufendes Kreisprofil

Wasserspieg	gel Unterwasser	444,639	m üNN
Energielinie a	am Unterwasser	444,639	m üNN
_	n Unterwasser	444,330	m üNN
Rohrsohle an	n Oberwasser	444,310	m üNN
Durchfluß Q		130	l/s
	Nennweite DN	500	mm
	Rauhigkeitsbeiwert k	2	mm
	Länge	4,50	m
Verlustbeiw	erte Zeta		
	Einzelverluste		
	Auslauf	1,000	
	Einlauf	0,500	
	Summe	1,500	
	Rohrreibungsverluste		
	Re	252.704	
	Iteration	5,889	
	Lambda	0,029	
	Zeta	0,260	
Summe		1,760	
Fließgeschw	vindigkeit	0,66	m/s
Wasserspie	gel am Unterwasser	444,830	m üNN
Geschwindig	keitsh <mark>öhe</mark>	0,022	m
Energieverlu	sthöhe	0,039	m
Energielinie a	am Oberwasser	444,678	m üNN
Wasserspie	gel am Oberwasser	444,656	m aNN

13. Überfall Sandfang Ablauf

13.1. Eingabedaten

Durchfluss Q	130	l/s
Wasserspiegel Unterwasser	444,656	m üNN
Wehroberkante	444,57	m üNN
Wehrbreite	1,2	m
Bordhöhe	445,3	m üNN
Überfallbeiwert µ	0,42	
Exponent n für unvollkommenen Überfall	6	

13.2.a) vollkommener Überfall

Überfallhöhe	0,20	m
Freibord	0,53	_m
Wasserspiegel Oberwasser	444,77	m üNN

13.2.b) unvollkommener Überfall

Überfallhöhe	0,00	m
Freibord	0,730	m
Wasserspiegel Oberwasser	444,570	m üNN

Wasserspiegelow	444,767 m üNN
-----------------	---------------

14. Sandfang

14.1. Eingabedaten

Wasserspiegel am Unterwasser	444,767	m ūNN
Rohrsohle am Unterwasser	442,591	m ūNN
Rohrsohle am Oberwasser	442,59	m üNN
Durchfluß Q	130	1/s
Gerinnebreite b	1,60	m
Gesamtlänge	25,00	
Rauhigkeitsbeiwert k _{st}	70	m ^{1/3} /s
Bordhöhe _{ow}	445,290	m üNN

14.2. Grenzverhältnisse Rechteckgerinne

Grenzwassertiefe h _{gr}	0,088	m
Grenzgeschwindigkeit v _{gr}	0,927	m/s
Grenzenergiehöhe H _{sr}	0.131	m

14.3. Rechteckgerinne: Wasserspiegellage bei stationär ungleichförmiger Strömung

Sohlgefälle I _s	0%	-
h _{UW}	2,176	m
Länge	25,00	m
benetzer Querschnitt A _{UW}	3,48 <mark>1</mark>	m²
benetzter Umfang U _{UW}	5,952	m
hydraulischer Radius: Rhyd _{uw}	0,585	m
V _{UW}	0,037	m/s
Normalwassertiefe h _n	0,429	m
A _{ow}	3,483	m²
U _{ow}	5,954	m
Rhydow	0,585	m
Vow	0,037	m/s

Wasserspiegel am Oberwasser	444,767 m	ONN
Freibord	0,523 m	
h _{ow}	2,177	m
Resultierendes Δ h	0,000	m
Δ e, Geschwindigkeitshöhe	0,000	
Δ e, Energiehöhe	0,000	
l _e	0,000	
C_{m}	64,016	
V _{mittel}	0,037	m/s
R _{hyd mittel}	0,585	m
U _{mittel}	5,953	m
A _{mittel}	3,482	m ²

15. Zulaufgerinne vom Rechenablauf zum Sandfang

15.1. Eingabedaten

Wasserspiegel am Unterwasser	444,767	m üNN
Rohrsohle am Unterwasser	444,59	m üNN
Rohrsohle am Oberwasser	444,69	m ūNN
Durchfluß Q	130	l/s
Gerinnebreite b	0,50	m
Gesamtlänge	36,00	m
Rauhigkeltsbeiwert k _{st}	70	m ^{1/3} /s
Bordhōheow	445,500	m üNN

15.2. Grenzverhältnisse Rechteckgerinne

Grenzwassertiefe h _{gr}	0,190	m
Grenzgeschwindigkeit v _{gr}	1,366	m/s
Grenzenergiehöhe Hor	0,285	m

15.3. Rechteckgerinne: Wasserspiegellage bei stationär ungleichförmiger Strömung

Sohlgefälle I _s	0,003	
h _{uw}	0,177	m
Länge	36,00	m
benetzer Querschnitt Auw	0,088	m²
benetzter Umfang Uuw	0,854	m
hydraulischer Radius: Rhyd	0,104	m
V _{UW}	1,470	m/s
Normalwassertiefe h _n	0,274	m
A _{ow}	0,155	m²
U _{ow}	1,121	m
Rhyd _{ow}	0,138	m
V _{OW}	0,838	m/s
A _{mittel}	0,122	m²
U _{mittel}	0,987	m
R _{hyd mittel}	0,123	m
V _{mittel}	1,154	m/s
C _m	49,391	
l _e	0,004	
Δ e, Energiehöhe	0,159	
Δ e, Geschwindigkeitshöhe	-0,074	
Resultierendes Δ h	0,234	m
h _{ow}	0,310	m
	7007254965	

Freibord	0,500 m				
Wasserspiegel am Oberwasser	445,00	m ONN			

16. Rechengerinne

16.1. Eingabedaten

Wasserspiegel am Unterwasser 445,00	0 m üNN
Rohrsohle am Unterwasser 444,6	9 m üNN
Rohrsohle am Oberwasser 444,7	7 m üNN
Durchfluß Q	0 l/s
Gerinnebreite b	<mark>0</mark> m
Gesamtlänge 14,5	0 m
Rauhigkeitsbeiwert k _{st}	o m ^{1/3} /s
Bordhöhe _{OW} 445,50	0 m üNN

16.2. Grenzverhältnisse Rechteckgerinne

Grenzwassertiefe h _{gr}	0,190	m
Grenzgeschwindigkeit v _{gr}	1,366	m/s
Grenzenergiehöhe Har	0,285	m

16.3. Rechteckgerinne: Wasserspiegellage bei stationär ungleichförmiger Strömung

Sohlgefälle I _s	0,006	-
h _{UW}	0,310	m
Länge	14,50	m
benetzer Querschnitt A _{uw}	0,155	m²
benetzter Umfang U _{UW}	1,121	m
hydraulischer Radius: Rhyd _{uw}	0,138	m
V _{UW}	0,838	m/s
Normalwassertiefe h _n	0,212	m
Aow	0,125	m²
U _{ow}	1,000	m
Rhydow	0,125	m
V _{OW}	1,041	m/s
A _{mittel}	0,140	m ²
U _{mittel}	1,060	m
R _{hyd mittel}	0,132	m
V _{miltel}	0,939	m/s
C _m	49,955	
l _e	0,003	
Δ e, Energiehöhe	0,039	
Δ e, Geschwindigkeitshöhe	0,019	
Resultierendes A h	0,019	m
h _{ow}	0,250	m
	/arranament	

 Freibord
 0,280 m

 Wasserspiegelverlust am Rechen
 0,200 m
 Pauschal

 Wasserspiegel am Oberwasser
 445,220 m @NN

RLS - Mischgerinne

Berechnungsverfahren:

- Nach Manning-Strickler
- Mit Berücksichtigung der Rauheitswerte aus Lastfall 1 Fließgewässerrauheiten (Sandrauheiten) im Sommer

Gewählte Berechnungsparameter:

- Projektnummer : 3

- Berechnung von Station + 0 km + 0,00 m bis Station + 0 km + 5,40 m

- Anfangswasserspiegel 444,055 m+NN
- Stationierung gegen Fließrichtung
- mit Ermittlung des schießenden Fließzustandes
- Iterationsgenauigkeit der Wasserspiegel von 5,0 mm
- Berechnung FROUDE-Zahl nach Knauf-Könemann

PROGRAMM REHM/FLUSS 14.3 (1D)

Wipfler Planungsgesellschaft mbH, 85276 Pfaffenhofen, Tel. 08441/5046-0

Projekt: RLS - Mischgerinne

Projektnummer: 3								Datum: 19.03.2021							
Profil-km -Art	A (m2)	Lu (m)	v (m/s)	kst	Länge (m)	Q (m3/s)	E-Linie (m+NN)	Wsp (m+NN)	Tiefe (m)	Frou- de	S (N/m2)	Sohle (m+NN)	Je (o/oo)	Wsp. li	-Ufer re
0+000,00	0,00	0,00	0,00	0,0	0,00	0,114	444,06	444,06	0,95	0,04	0,19	443,10	0,058	-D,48	0,49
Ablauf	0,91	2,86 0,00	0,13 0,00	35,0 0,0	1,00 -0,00										
0+002,50	0,00	0,00	0,00	0,0	0,00	0,114	444,06	444,06	0,96	0,04	0,19	443,10	0,058	-0,48	0,49
1	0,92	2,87	0,12	35,0	2,50										
Mischkammer	0,00	0,00	0,00	0,0	0,00										
0+002,51	0,00	0,00	0,00	0,0	0,00	0,130	444,06	444,06	0,96	0,07	3,54	443,10	1,532	-0,31	0,31
1	0,58	2,52	0,22	15,2	0,01										
Zungenrinne	0,00	0,00	0,00	0,0	0,00										
0+003,75	0,00	0,00	0,00	0,0	0,00	0,130	444,18	444,11	0,18	0,91	130,72	443,93	115,96	-0,30	0,30
1	0,11	0,96	1,21	15,2	1,24		Stossve	lust = 0	049 m						
Zungenrinne	0,00	0,00	0,00	0,0	0,00										
0+005,40	0,00	0,00	0,00	0,0	0,00	0,130	444,30	444,28	0,30	0,43	43,14	443,98	28,703	-0,31	0,31
1	0,18	1,19	0,73	15,2	1,65	•	•		100 B 115 P 2			r restricted at		•	1000
Zulauf RS BW	0,00	0,00	0,00	0,0	0,00										