ANLAGE 2.3

BEMESSUNG DER BIOLOGISCHEN STUFE NACH DWA A-131

Klärtechnische Berechnung Kläranlage

AZV Oberes Ilmtal

1. Grunddaten

1.1 Abwasserzufluss

Kommunales Abwasser

13,17 l/s Schmutzwasserabfluss im Jahresmittel: 47,42 m3/h 138,75 % Spezifischer Fremdwasseranfall: qf 24,00 h/d Stundenmittel für Fremdwasser: QF,aM 18.28 l/s Fremdwasseranfall: 65,79 m3/h QT,aM = 31,45 l/s Trockenwetterabfluss im Jahresmittel: 113,21 m3/h 2.717,00 m3/d Tagesspitze bei Trockenwetter im Jahresmittel: QT,h,max =40.83 l/s 147,00 m3/h Mischwasserabfluss: QM 130,00 l/s 468,00 m3/h

1.2 Abwasserverschmutzung

Die stündlichen Mengen sind mit den Stundenmitteln für Schmutzwasser und Fremdwasser berechnet.

Abwasserverschmutzung			
	g/(E*d)	kg/d	mg/l
CSB-Kommunal	120,00	1.278,00	470,37
TSo-Kommunal	70,05	746,00	274,57
TKN-Kommunal	15,09	160,70	59,15
P-Kommunal	1,79	19,10	7,03

1.3 Gewähltes Verfahren

Berechnungsverfahren

- Berechnung der Biologie nach DWA-A131 (2016)
- Bemessung auf der Basis des CSB

Reinigungsverfahren

- Belebungsverfahren
- Intermittierende Denitrifikation
- Umwälzung und Belüftung

2. Biologische Stufe

2.1 Belebungsbecken

Belebungsanlage mit intermittierender Denitrifikation

Die Belebungsbecken werden mit simultaner Schlammstabilisierung bemessen. Die Belüftung wird intermittierend betrieben.

Abwasserverschmutzung			
	g/(E*d)	kg/d	mg/l
CSB-Kommunal	120,00	1.278,00	470,37
CSB-Gesamt		1.278,00	470,37
TSo-Kommunal	70,05	746,00	274,57
TSo-Gesamt		746,00	274,57
TKN-Kommunal	15,09	160,70	59,15
TKN-Gesamt	S. A.V.	160,70	59,15
P-Kommunal	1,79	19,10	7,03
P-Gesamt		19,10	7,03

Qd,konz:

2.717,00 m3/d

Konstanten

Anteil anorganische Stoffe an den abfiltrierbaren Stoffen:

	fB	=	0,30
Inerter Anteil am partikulären CSB:	fA	=	0,30
Anteil des leicht abbaubaren CSB am abbaubaren CSB (0,18	5 - 0,25):		
	fCSB	=	0,20
Zerfallskoeffizient:	b	=	0,17
Ertragskoeffizient:	Y	=	0,67
Anteil des gelösten inerten CSB:	fS	=	0,05
Zusätzliche ÜS-Produktion:	YCSB,do	s =	0,00

Konzentrationen der Fraktionen der Abwasserinhaltsstoffe im Zulauf zur Biologie

Partikulärer CSB:	XCSB,ZB =	307,52 mg/l
Gelöster CSB:	SCSB,ZB =	162,86 mg/l
Gelöster inerter CSB:	SCSB,inert,ZB =	23,52 mg/l
partikulärer inerter CSB:	XCSB,inert,ZB =	92,25 mg/l
abbaubarer CSB in der homogenisierten Probe:	CCSB,abb,ZB =	354,60 mg/l
leicht abbaubarer CSB in der homogen. Probe:	CCSB,la,ZB =	70,92 mg/l
abfiltrierbare anorganische Stoffe:	Xanorg,TS,ZB =	82,37 mg/l
Aufstockung des CSB durch externen Kohlenstoff:	CCSB,dos =	0,00 mg/l

Dimensionierung der Belebung

Reaktionstemperatur:

Т

11,00 °C

Temperaturfaktor FT:

 $FT = 1.072^{(T-15)} =$

0.76

Stickstoffbilanz			
		kg/d	mg/l
TKN (Zulauf)	CTKN,ZB	160,70	59,15
Nitrat-N (Zulauf)	SNO3,ZB	0,00	0,00
N-Inkorporation (Biomasse)	XorgN,BM	12,64	4,65
N-Einlagerung	XorgN,inert	10,31	3,79
Ammonium-N (Ablauf)	SNH4- N,AN	2,72	1,00
organisch-N (Ablauf)	CorgN,AN	5,43	2,00
Nitrat-N (Ablauf)	SNO3,AN	18,20	6,70
Zu denitrifizierendes Nitrat	SNO3,D	111,41	41,00

SNO3,D = CTKN,ZB - SorgN,AN - SNH4-N,AN - XorgN,BM - XorgN,inert - SNO3,AN [mg/l]

Gesamtschlammalter:

tTS =

20,00 d

Trockensubstanzkonzentration:

TSBB

2,27 kg/m³

Geforderte Ablaufwerte

Nitrat-N im Ablauf:

6,70 mg/l

Ammonium-N im Ablauf:

1,00 mg/l

Organisch-N im Ablauf:

2,00 mg/i

Aerobes Schlammalter (maximal):

tTS,aerob,max =

7,80 d

erforderliches Denitrifikationsverhältnis:

VD/VBB =

0,610

Verhältnis Nitrifikationsvolumen zu Gesamtvolumen:

VN/V

0,39

Ergebnis der Bemessung

Überschussschlammproduktion aus Kohlenstoffelimination

XCSB,ÜS = XCSB,inert,ZB + XCSB,BM + XCSB,inert,BM

[mg/l]

XCSB,BM = CCSB,abb,ZB * Y + CCSB,dos * YCSB,dos

[mg/l]

CSB der Biomasse:

XCSB,BM

= 66,46

mg/l

XCSB,inert,BM = 0,2 * XCSB,BM * tTS * b * FT

[mg/l]

inerter Anteil des CSB in der Biomasse:

XCSB,inert,BM =

34,22 mg/l

auf den Abwasserzufluss bezogene CSB-Konzentration des Überschussschlammes:

XCSB,ÜS

= 192,94

mg/l

Tägliche Schlammproduktion aus der Kohlenstoffelimination:

[kg/d]

$$USd,C = 621,67 \text{ kg/d}$$

$$\ddot{U}S,P = \frac{Qd,konz*(3*XPbioP+6,8*XPFaellFe+5,3*XPFaellAl)}{1000}$$

[kg/d]

US.P = 67.95 kg/d

$$USd = USd,C + US,P$$
 [kg/d]

USd = 689,62 kg/d

Sauerstoffbedarf für den Kohlenstoffabbau:

OVC = 253,91 mg/l

Anteil des Sauerstoffbedarfs aus leicht abbaubarem CSB und extern dosiertem CSB für intermittierende Denitrifikation:

Gesamter Sauerstoffverbrauch in der Denitrifikationszone für intermittierende Denitrifikation:

OVC,D = 116,16 mg/l

Vergleich Sauerstoffzehrung zu Sauerstoffangebot:

$$x = \frac{OVc,D}{2.86 * SNO3.D} = 0,99$$

Erforderliches Gesamtvolumen: Vmin = 6.075,97 m³

Gewählte Abmessungen des Belebungsbeckens

Außendurchmesser: DBBa = 50,20 m Wassertiefe: WT = 3,07 m

Volumen: VBB = $6.076,25 \text{ m}^3$

Volumen (pro Einwohnergleichwert): 570,54 I/EW

Aufenthaltszeit

Rücklaufverhältnis bei Trockenwetter: RV(Qt) =

Trockenwetterzufluss: Qtd = 2.717,00 m³/d

$$tRmin = \frac{VBB}{Qtd^*(1+RV)}$$
 = 1,118 d = 26,84 h

Nachweis

$$BR = \frac{1278,00 \text{ kgCSB/d}}{6076,25 \text{ m}^3} = 0,210 \text{ kg/(m}^{3*}\text{d})$$

BTS =
$$\frac{0.210 \text{ kgCSB/(m}^{3*d)}}{2.27 \text{ kg/m}^{3}}$$
 = 0.093 kg/(kg*d)

2.1.2 Säurekapazität

Säurekapazität im Zulauf:	KSo =	8,00 mmol/l
Ammonium-N im Zulauf (0,50 * TKN):	NH4-No =	29,57 mg/l
Ammonium-N im Ablauf:	NH4-Ne =	1,00 mg/l
Nitrat-N im Ablauf:	NO3-Ne =	6,70 mg/l
Eisenkonzentration:	Fe3	9,93 mg/l
Gefällter Phosphor:	Po-Pe	3,68 mg/l

KSe = KSo - [0,07*(NH4No - NH4Ne + NO3Ne) + 0,06*Fe3 + 0,04*Fe2 + 0,11*Al3 - 0,03*(Po-Pe)]

Theoretische Säurekapazität im Ablauf:

KSe = 4,68 mmol/l

Der von der ATV vorgegebene Minimalwert der verbleibenden Säurekapazität im Ablauf der Belebungsanlage von 1,5 mmol/l wird nicht unterschritten.

2.1.3 Sauerstoffbedarf / Intermittierende Denitrifikation

Die Berechnung des Sauerstoffbedarfs erfolgt über eine Bilanzierung nach DWA-M 229-1.

Lastfall 1 = Bemessung

Lastfall 2 = Luftbedarf für die Bemessung des Belüftungssystems

Lastfall 3 = Winter

Stickstoffbilanz

Lastfall	CTKN,ZB	SNO3,ZB	SNH4-N,AN	XorgN,BM	XorgN,inert,BM
	mg/l	mg/l	mg/l	mg/l	mg/l
1	59,15	0,00	1,00	4,65	3,79
2	59,15	0,00	1,00	3,46	3,90
3	59,15	0,00	1,00	4,60	3,80

Parameter Biologie

Erforderliches aerobes Schlammalter:

tTS, aerob = PF * 3,4* 1,103^(15-T) [d]

Prozessfaktor:

PF

Reaktionstemperatur:

T [°C]

Denitrifikationsverhältnis

VD/VBBmax= 1 - tTS, aerob / tTS

SNO3.D1:

Zu denitrifizierendes Nitrat, Ablaufanforderungen

SNO3,D2:

denitrifiziertes Nitrat, aufgrund der gewählten Denitrifikationskapazität

SNO3,D3 :

denitrifiziertes Nitrat, tatsächlich

VD/V2 :

Denitrifikationsverhältnis, gewählt

SNO3,D1 = CTKN,ZB + SNO3,ZB - SorgN,AN - SNH4-N,AN - SNO3,AN - XorgN,BM

[mg/l]

SNO3,D2 = Denitrifikationskapazität * CCSB,ZB

[mg/l]

SNO3,D3 = CTKN,ZB + SNO3,ZB - SorgN,AN - SNH4-N,AN - SNO3,AN,tatsächlich -

XorgN,BM [mg/l]

Nitratkonzentration im Ablauf SNO3, AN, gewähltes Denitrifikationsverhältnis

SNO3,AN = CTKN,ZB - SorgN,AN - SNH4-N,AN - XorgN,BM - SNO3,D3

Lastfall	Belastung	TW	TSBB	üsd	tTS	PF	tTS,aerob	tTS,aerob2
	%	°C	kg/m³	kg/dCSB	d		d	d
1	100,0	11,00	2,27	689,6	20,00	0,00	0,00	2220
2	100,0	16,00	2,27	661,4	20,85	0,00	0,00	8,33
3	80,0	8,00	2,27	550,7	25,05	0,00	0,00	10,02

Lastfall	VD/VBBmax	VD/V2	SNO3,Dist	SNO3,AN	X
	-	-	mg/l	mg/l	
1	0,610	0,610	41,00	6,70	0,99
2	1,000	0,600	42,12	6,67	1,00
3	1,000	0,600	40,05	7,71	0,98

Sauerstoffbedarf

Sauerstoffverbrauch für die Kohlenstoffelimination

OVC = CCSB,abb,ZB + CCSB,dos - XCSB,BM - XCSB,inert,BM

[mg/l]

$$OVd,C = \frac{Qd,konz*OVC}{1000}$$
 [kgO2/d]

$$XCSB,BM = \frac{(CCSB,abb,ZB*Y + CCSB,dos*YCSB,Dos)}{1 + b*tTS*FT}$$
 [mg/l]

[mg/l]

Sauerstoffverbrauch für die Nitrifikation

$$OVd,N = \frac{Qd^44,3^*(SNO3,D - SNO3,ZB + SNO3,AN)}{1000}$$
 [kgO2/d]

SNO3 Konzentration des Nitratstickstoffs mg/l in der filtrierten Probe als N

Sauerstoffverbrauch für die Denitrifikation

$$OVd,D = \frac{Qd*2,86*SNO3,D}{1000}$$
 [kgO2/d]

Sauerstoffbedarf für die verschiedenen Lastfälle OVh

$$OVh = \frac{(OVd, C - OVd, D) * fC + OVd, N * fN}{24}$$
 [kgO2/h]

Für den Lastfall 2 wurden für fC und fN die Werte aus Tabelle 8 des Arbeitsblattes DWA-A 131 angesetzt.

Erhöhungsfaktor für intermittierende Belüftung:

$$f, int = \frac{1}{1 - VD/VBB}$$

Lastfall	XCSB,BM	XCSB,inert,BM	ÜSC	OVC,la	OVCD	OVC
	mg/l	mg/l	kg/d	mg/l	mg/l	mg/l
1	66,46	34,22	621,67	0,00	116,16	253,91
2	49,49	37,62	593,43	0,00	120,46	267,49
3	65,68	34,38	496,29	0,00	114,53	254,54

Lastfall	OVd,C	OVd,N	OVd,D	OVh	fC	fN	fint
	kgO2/d	kgO2/d	kgO2/d	kgO2/h			
1	689,87	557,32	318,62	38,69	1,00	1,00	2,56
2	726,76	570,01	327,28	59,26	1,12	1,71	2,50
3	553,26	446,32	248,94	31,28	1,00	1,00	2,50

Sauerstoffbedarf OVh, und notwendige Sauerstoffzufuhr SOTR

	SOTR = $\frac{fd * \text{ßSt *CS,20 *} fST,ST}{\alpha * fS,\alpha * (fd * \text{ß}\alpha * \text{Cs,T *} (Patm/1.013) - Cx) * \Theta^{(TW-20)}}$	* OVh
* fint	[kgO2/h]	
ßSt ßa fSt,ST fS,a cS,20	Salzfaktor Sauerstoffsättigungswert in Reinwasser Salzfaktor Sauerstoffsättigungswert unter Betriebsbedingungen Salzfaktor Belüftungskoeffizient in Reinwasser Salzfaktor Belüftungskoeffizient unter Betriebsbedingungen Sauerstoffsättigung bei 20°C [mg/l]	

cS,T	Sauerstoffsättigung bei Bemessungst	emperatur	[mg/l]
CX	Betrieb Sauerstoffkonzentrationen	[mg/l]	
Θ	Temperaturfaktor, 1,024		

Salzfaktor	ßSt	ßα	fSt,ST	fS,α	
	1,00	1,00	1,00	1,00	

Lastfall	tL	α	cS,T	cx	SOTR
956	h/d		mg/l	mg/l	kgO2/h
1	9,36	0,85	11,03	1,50	142,33
2	9,59	0,65	9,88	1,50	280,67
3	9,60	0,65	11,84	1,50	145,30

Notwendige Luftmenge

$$QL,N = \frac{1000 * SOTR}{SSOTR * hD}$$
 [mN3/h]

Umrechnung von Normbedingungen auf Ansaugbedingungen Atmosphärischer Druck

patm =
$$(\frac{288 - 0,0065 * hgeo}{288})^{\Lambda} 5.255 *1013,25 = 968,41 [hPa]$$

Ansaugdruck

$$p1$$
, abs = patm - $\Delta p1$

Sättigungsdampfdruck

$$ps = 6,112 * EXP((17,62*TL1)/(243,12+TL1))$$
 [hPa]

Ansaugvolumenstrom Q1

$$Q1 = \frac{(TN+TL1)*pN*QL,N}{TN*(p1,abs-\phi*ps)}$$
 [m3/h]

Q1	Ansaugvolumenstrom	m3/h
TN	Normtemperatur	273,15 k
TL,1	Ansaugtemperatur, Standardwert	30°C
pΝ	Normluftdruck	1.013,25 hPa (1hPa = 1 mbar)
ф	relative Luftfeuchte	0,3

Lastfall	SSOTR	QL,N	
	gO2/(mN3*m)	mN3/h	
1	21,00	2.214,92	
2	21,00	4.367,68	
3	21,00	2.261,15	

Luftmenge für die Bemessung der Belüftungseinrichtung, Lastfall 2

Kapazität der vorhandenen Gebläse:

QL

4.992,00 Nm3/h

Berechnung für verschiedene Lastfälle gemäß ATV A131

		Lastfall 1	Lastfall 2	Lastfall 3
Temperatur	°C	11,00	16,00	8,00
Trockensubstanzkonzentration	kg/m³	2,27	2,27	2,27
TKN-Konzentration im Zulauf CTKN,ZB	mg/l	59,15	59,15	59,15
Nitrat-N im Zulauf SNO3,ZB	mg/l	0,00	0,00	0,00
Ammonium-N im Ablauf SNH4- N,AN	mg/i	1,00	1,00	1,00
Organisch-N im Ablauf SorgN,AN	mg/l	2,00	2,00	2,00
N-Inkorporation in der Biomasse XorgN,BM	mg/l	4,65	3,46	4,60
Zu denitrifizierendes Nitrat SNO3,D	mg/l	41,00	42,09	41,05
Zu denitrifizierendes Nitrat SNO3,Dist	mg/l	41,00	42,12	40,05
Nitrat-N im Ablauf SNO3,AN	mg/l	6,70	6,67	7,71
Gesamtschlammalter tTS	d	20,00	20,85	25,05
Stoßfaktor fC		1,00	1,12	1,00
Stoßfaktor fN		1,00	1,71	1,00
VD/VBB max	1100000	0,610	1,000	1,000
VD/VBB gewählt		0,610	0,600	0,600
Belüftungszeit tL	h/d	9,36	9,59	9,60
OVd,C	kgO2/d	689,87	726,76	553,26
OVd,N	kgO2/d	557,32	570,01	446,32
OVd,D	kgO2/d	318,62	327,28	248,94
OVh	kgO2/h	38,69	59,26	31,28
СХ	mg/l	1,50	1,50	1,50
α		0,85	0,65	0,65
Sauerstoffzufuhr SOTR	kgO2/h	142,33	280,67	145,30
QL	m³/h	2.214,92	4.367,68	2.261,15

Die vorhandenen Gebläse sind für die Prognose ausreichend dimensioniert.

2.1.4 Technische Ausrüstung

Belebungsbecken Belüftung

Verdichter: Drehkolbengebläse

Maschinendaten

Anzahl der Aggregate:

Fördermenge je Aggregat:

Fördermenge Gesamt:

4 Stück 1.248,00 m³/h

4.992,00 m³/h

2.1.5 Phosphatelimination

Ermittlung der zu fällenden Phosphatfracht

	0	mg/l	kg/d
P-Konzentration Zulauf	CP,Z	7,03	19,10
P-Konzentration Zulauf Belebung	CP,ZB	7,03	19,10
Biologisch gebundener Phosphor	XP,BM	2,35	6,39
Biologische P-Elimination	XP,BioP	0,00	0,00
P-Konzentration (Ablauf)	CP,AN	1,00	2,72

Zu fällender Phosphor

XP,Fäll = CP,ZB - CP,AN - XP,BM - XP,BioP [mg/l]

Zulaufende Fracht: ,19,10 kg/d In die Biomasse eingebauter Phosphor XP,BM: 0,005 kg/kg Ablaufende P-Fracht (1,0 mg/l): 2,72 kg/d

Zu fällende P-Fracht (Auslegung): 9,99 kg/d

Erforderliche tägliche Fällmittelmenge

Fällmittel: FeCl3

Molverhältnis: b = 1,50

molFe/molP

Verhältnis der Molekulargewichte: Fe/P = 1,80

Notwendige Eisenmenge (Auslegung): PO4-P * Fe/P * b = 26,98 kg/d

Tägliche Dosiermenge (40 % Eisenchloridlösung):196,96 kg/dDichte der Lösung:r=1,50 kg/l

Überschussschlammanfall aufgrund der Phosphatelimination

Spezifischer Überschussschlammanfall: ÜSp = 0,053

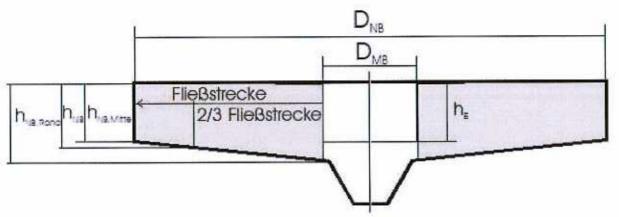
kgTS/kgCSB

Täglicher Überschussschlammanfall: 67,95 kg/d

Anteil der TS am Belebtschlamm: TSp = 2,25 kg/m³

Gesamte Überschussschlammproduktion:

Erforderliche Eisensalzmenge (Auslegung):


 $\ddot{U}Sd = \ddot{U}Sd,C + \ddot{U}Sd,P$ = 689,62 kg/d

2.2 Überschussschlamm

Täglicher Überschussschlammanfall (Biologie):70,49 m³/dTäglicher Überschussschlammanfall (Phosphatfällung):7,70 m³/dTäglicher Überschussschlammanfall (gesamt):78,19 m³/dFeststoffkonzentration:8,82 kg/m³

131,31 I/d

Nachrechnen der bestehenden Nachklärbecken

DNB	Durchmesser Nachklärbecken	m
DMB	Durchmesser des Mittelbauwerkes	m
hE	Einlau <mark>ft</mark> iefe	m
hNB,Mitte	Wassertiefe am Mittelbauwerk	m
hNB	Mittlere Wassertiefe	m
hNB,Rand	Wassertiefe am Rand	m

Die Berechnung erfolgt nach Arbeitsblatt DWA-A 131.

1. Bauwerkseckdaten

Beckenform:	Rundbecken		
Durchmesser:	17 m		
Wassertiefe am Rand:	3,6 m		
Wassertiefe am Mittelbauwerk:	4 m		
Durchmesser des Mittelbauwerkes:	2,6 m		
Einlauftiefe:	1 m		

2. Grunddaten

Durchströmung:

Entwässerung im Mischsystem.

Name of the second			
Schlammvolumenindex:	ISV	=	145 ml/g
Eindickzeit:	tE	=	2 h
Rücklaufverhältnis (Qm):	RV		0,6
TS-Rücklaufschlamm / TS-Beckensohle:	TSRS/TSB	S =	0,7

3. Ergebnis

Teilweise vertikal

Max. TS im Belebungsbecken:	TSBB	=	2,28 kg/m ³
Vergleichsschlammvolumen:	VSV	=	331 ml/l
Oberfläche (ohne Zulaufdüker):			221,67 m ²
Volumen (ohne Zulaufdüker):			847,55 m ³

Höhe auf 2/3 Fließstrecke:3,73 mVerhältnis zwischen Einlauftiefe und Fließstrecke:hE/FS = 0,14

Die maximale Schlammvolumenbeschickung bzw. Flächenbeschickung errechnet sich aus der Höhe auf 2/3 Fließstrecke. (RV, TSBB, ISV, tE = const.).

Schlammvolumenbeschickung, maximal: $qSVmax = 500 l/(m^2*h)$ Schlammvolumenbeschickung, berechnet: $qSVerr = 425 l/(m^2*h)$ Schlammvolumenbeschickung, gewählt: $qSVgew = 425 l/(m^2*h)$ Maximale Flächenbeschickung: qAmax = 1,29 m/h

Höhe der einzelnen Zonen

Klarwasserzone:

h1 = const. = 0,49 m

Übergangs- und Pufferzone:

$$h23 = qA*(1+RV)*[500/(1000-VSV) + VSV/1100]$$
 = 2,16 m

Rücklaufverhältnis:RV=0,6TS-Konzentration im Rücklaufschlamm:TSRS= $6,08 \text{ kg/m}^3$ TS-Konzentration an der Beckensohle:TSBS= $8,69 \text{ kg/m}^3$ Eindickzeit:tE=2 h

Eindickzone:

 $h4 = \frac{TSBBmax*qA*(1+RV)*tE}{TSBS} = 1,08 m$

Der maximale Mischwasser- bzw. Trockenwetterzufluss errechnet sich aus der Oberfläche und der maximalen Flächenbeschickung.

Maximaler Mischwasserzufluss: Qmmax = 285,12 m³/h Gemeinsamer maximaler Mischwasserzufluss 2 NKB: Qmmax = 570,24 m³/h